Abnormal Behavior Detection Based on Traffic Pattern Categorization in Mobile Networks

نویسندگان

چکیده

Abnormal behavior in mobile cellular networks can cause network faults and consequent cell outages, a major reason for operational cost increase revenue loss operators. Nonetheless, outages be avoided by monitoring abnormal situations the acting accordingly. Thus, anomaly detection is an important component of self-healing control management. Network operators may use detected to quantify numerically their intensity. The quantification assists characterization potential regions infrastructure updates support creation public policies local connectivity enhancements. We propose unsupervised learning solution using Call Detail Records (CDR) data. evaluate our real CDR data set provided Italian operator compare it against other state-of-the-art solutions, showing performance improvement around 35%. also demonstrate relevance considering distinct traffic patterns diverging geographic areas networks, aspect often ignored literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It intr...

متن کامل

Towards Flow - based Abnormal Network Traffic Detection

One recent trend in network security attacks is an increasing number of indirect attacks which influence network traffic negatively, instead of directly entering a system and damaging it. In future, damages from this type of attack are expected to become more serious. In addition, the bandwidth consumption by these attacks influences the entire network performance. This paper presents an abnorm...

متن کامل

ADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS

In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...

متن کامل

Energy Level-Based Abnormal Crowd Behavior Detection

The change of crowd energy is a fundamental measurement for describing a crowd behavior. In this paper, we present a crowd abnormal detection method based on the change of energy-level distribution. The method can not only reduce the camera perspective effect, but also detect crowd abnormal behavior in time. Pixels in the image are treated as particles, and the optical flow method is adopted to...

متن کامل

Visual abnormal behavior detection based on trajectory sparse reconstruction analysis

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which coul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Network and Service Management

سال: 2021

ISSN: ['2373-7379', '1932-4537']

DOI: https://doi.org/10.1109/tnsm.2021.3125019